МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Башкирский институт технологий и управления (филиал) федерального государственного бюджетного образовательного учреждения «Московский государственный университет технологий и управления имени К.Г. Разумовского (Первый казачий университет)»

Рабочая программа дисциплины (модуля)

Б1.О.04.14 Архитектура вычислительных систем

Кафедра: Информационные технологии и системы управления

Направление

подготовки:

09.03.01 Информатика и вычислительная техника

Направленность

(профиль):

Проектирование программного обеспечения мобильных робототехнических систем в пищевой промышленности и

отраслях агропромышленного комплекса

Квалификация

выпускника:

Бакалавр

Форма обучения: очно-заочная

Год набора: 2022

Общая 108 часов/3 з.е.

трудоемкость:

Программу составил(и): канд.пед.наук доц. Яшин Д.Д.

Руководитель ОПОП

Рабочая программа дисциплины (модуля)

"Архитектура вычислительных систем"

разработана составлена на основании учебного плана, утвержденного ученым советом 25 мая 2023 г. протокол № 11 в соответствии с ФГОС ВО Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 09.03.01 Информатика и вычислительная техника (приказ Минобрнауки России от 19.09.2017 г. № 929)

доцент, к.п.н	. доцент Яшин Д.Д.
Рабочая программа обсуждена на за Информационные технологии и с	аседании обеспечивающей кафедры системы управления
Протокол от <u>29 июня</u> 2023 г.	
И.о зав. кафедрой Одинокова Е.В	Q{

СОДЕРЖАНИЕ

- 1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)
- 2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ И ОБЪЕМ С РАСПРЕДЕЛЕНИЕМ ПО СЕМЕСТРАМ
- 3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
- 4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
- 5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ
- 6. ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
- 7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
- 8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
- 9. ОРГАНИЗАЦИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1. Цели:

Целью дисциплины является обучение студентов основным понятиям, моделям и методам информационных технологий, формирование знаний, умений и навыков решения задач автоматизации информационных процессов на основе информационных технологий.

1.2. Задачи:

- практическое освоение информационных и информационно-коммуникационных технологий и инструментальных средств для решения типовых общенаучных задач в своей профессиональной деятельности и для организации своего труда.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ И ОБЪЕМ С РАСПРЕДЕЛЕНИЕМ ПО СЕМЕСТРАМ

Цикл (раздел) ОП: Б1.О

Дисциплина относится к обязательной части ОПОП и обязательна для освоения.

Связь с предшествующими дисциплинами (модулями), практиками

№ п/п	Наименование	Семестр	Шифр компетенции
1	Сети и телекоммуникации	3	ОПК-7, ОПК-3

Связь с последующими дисциплинами (модулями), практиками

№ п/п	Наименование	Семестр	Шифр компетенции
1	Системы реального времени	6	ОПК-2, ОПК-7
2	Технологическая (проектно-технологическая) практика	6	ОПК-2, ОПК-8, ОПК-9, ОПК-1, ОПК-4, ОПК-5, ОПК-6, ОПК-7, ОПК-3, УК-1, УК- 2, УК-3, УК-5, УК-9, УК-6, УК-4, УК-8
3	Технологическая (проектно-технологическая) практика	8	ОПК-4, ОПК-5, ОПК-6, ОПК-7, ОПК-3, УК-6, УК-1, УК-2, УК-3, УК-4, УК-8, ОПК- 2

Распределение часов дисциплины

Семестр (<Курс>.<Семестр на курсе>)	5 (3.1)		Итого	
Недель	1	7		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	8	8	8	8
Лабораторные	12	12	12	12
В том числе электрон.	14 14		14	14
Итого ауд.	20	20	20	20
Контактная работа	20	20	20	20
Сам. работа	88	88 88		88
Итого	108	108	108	108

Вид промежуточной аттестации:

ЗаО 5 семестр

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций и индикаторов их

ОПК-7:Способен участвовать в настройке и наладке программно-аппаратных комплексов;

ОПК-7.1: Знает методы настройки, наладки программно-аппаратных комплексов

ОПК-7.2: Умеет анализировать техническую документацию, производить настройку, наладку и тестирование программно-аппаратных комплексов

ОПК-7.3: Владеет способами проверки работоспособности программно-аппаратных комплексов

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занятия	Наименования разделов, тем, их краткое содержание и результаты освоения /вид занятия/	Семест	Часов	Инте ракт.	Прак. подг.	Индикаторы достижения компетенции	Оценочные средства
	Раздел 1.Архитектура ЭВМ Джона фон Неймана.						

	0301-ПРТСвэд-22.plx	_	I -	_	_		стр. 5
1.1	Тема 1. Архитектура ЭВМ Джона фон Неймана. Цифровой логический уровень. Вентильные схемы логических операций. Краткое содержание: История развития вычислительных машин. Поколения ЭВМ. Обзор устройства и основные принципы работы ЭВМ. Понятие архитектуры ЭВМ. Обзор основных компонентов современной ЭВМ. Архитектура Фон Неймана. СІЅС. RІЅС. Принципы фон Неймана. Логические операции конъюнкции, дизъюнкции, отрицания и импликации. Электронные схемы логических операций И, ИЛИ, НЕ. Знать: Историю развития вычислительных машин. Поколения ЭВМ. Обзор устройства и основные принципы работы ЭВМ; Принципы фон Неймана. Логические операции конъюнкции, дизъюнкции, отрицания и импликации. Принципы построения электронных схем логических операций. /Лек/	5	2	0	0	ОПК-7.1	Тестирование Устный опрос
1.2	Лабораторная работа №1. Логические операции. Логические законы. Краткое содержание: Логические операции конъюнкции, дизъюнкции, отрицания и импликации. Построение таблиц истинности. Уметь: упрощать логические выражения; строить электронные схемы логических операций; Владеть: навыками упрощения логических выражений, используя логические законы. /Лаб/	5	1	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
1.3	Лабораторная работа №2. Логические операции на физическом уровне. Краткое содержание: Построение электронных схем логических операций И, ИЛИ, НЕ на макетной плате. Уметь: упрощать логические выражения; строить электронные схемы логических операций; Владеть: навыками упрощения логических выражений, используя логические законы. /Лаб/	5	1	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
1.4	Тема 1. Архитектура ЭВМ Джона фон Неймана. Цифровой логический уровень. Вентильные схемы логических операций. Краткое содержание: История развития вычислительных машин. Поколения ЭВМ. Обзор устройства и основные принципы работы ЭВМ. Понятие архитектуры ЭВМ. Обзор основных компонентов современной ЭВМ. Архитектура Фон Неймана. СISC. RISC. Принципы фон Неймана. Логические операции конъюнкции,	5	22	0	0	ОПК- 7.1,ОПК- 7.2,ОПК-7.3	Вопросы к самоподготовке

УП: Ме-09	0301-ПРТСвэд-22.plx						стр. 6
1.5	дизьюнкции, отрицания и импликации. Электронные схемы логических операций И, ИЛИ, НЕ. Знать: Историю развития вычислительных машин. Поколения ЭВМ. Обзор устройства и основные принципы работы ЭВМ; Принципы фон Неймана. Логические операции конъюнкции, дизьюнкции, отрицания и импликации. Принципы построения электронных схем логических операций. Знать: Историю развития вычислительных машин. Поколения ЭВМ. Обзор устройства и основные принципы работы ЭВМ; Принципы фон Неймана. Уметь: упрощать логические выражения; строить электронные схемы логических операций; Владеть: навыками упрощения логических выражений, используя логических выражений, используя логических выражений, используя логические законы. /Ср/	5	2	0	0	ОПК-7.1	Тестирование Устный опрос
	материнской платой. Краткое содержание: Изучение характеристик современного процессора и материнской платы ЭВМ. Знать: характеристики современного процессора и материнской платы ЭВМ. /Лек/						
1.6	Лабораторная работа №3. Подбор материнской платы и процессора. Краткое содержание: Определение материнской платы и процессора при сборке ЭВМ для различных целей. Уметь: осуществлять подбор материнской платы и процессора при сборке ЭВМ. Владеть: навыками побора мощности кулера для выбранного процессора. /Лаб/	5	1	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
1.7	Тема 2. Совместимость центрального процессора с материнской платой. Краткое содержание: Изучение характеристик современного процессора и материнской платы ЭВМ. Знать: характеристики современного процессора и материнской платы ЭВМ. Уметь: осуществлять подбор материнской платы и процессора при сборке ЭВМ. Владеть: навыками побора мощности кулера для выбранного процессора.	5	22	0	0	ОПК- 7.1,ОПК- 7.2,ОПК-7.3	Вопросы к самоподготовке

	90301-ПР1Свэд-22.ріх			I	I		стр. /
	/Ср/ Раздел 2.Архитектура памяти						
2.1	Тема 3. Статическая и динамическая память. Триггер на физическом уровне. Совместимость оперативной памяти с материнской платой. Подбор внешней памяти. Краткое содержание: Энергозависимая и энергонезависимая память базовые элементы статической и динамической памяти. Определение характеристик оперативной памяти и внешней памяти. Знать: Архитектуру памяти, взаимодействие с внешними устройствами ввода/ вывода, режимы адресации, регистры, машинные команды, различные типы внутренних данных. Характеристики оперативной памяти, характеристики внешней памяти. /Лек/	5	2	0	0	ОПК-7.1	Тестирование Устный опрос
2.2	Лабораторная работа №4. Построение триггера на макетной плате. Краткое содержание: Построение триггера на макетной плате. Уметь: Строить элементы статической памяти; Осуществлять подбор комплектующих ЭВМ. Владеть: Навыками построения триггера на макетной плате. Навыками сборки ЭВМ. /Лаб/	5	2	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
2.3	Лабораторная работа №5. Подбор комплектующих ЭВМ. Сборка ЭВМ. Краткое содержание: Подбор всех компонентов ЭВМ. Подключение всех компонентов. Уметь: Строить элементы статической памяти; Осуществлять подбор комплектующих ЭВМ. Владеть: Навыками построения триггера на макетной плате. Навыками сборки ЭВМ. /Лаб/	5	1	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
2.4	Тема 3. Статическая и динамическая память. Триггер на физическом уровне. Совместимость оперативной памяти с материнской платой. Подбор внешней памяти. Краткое содержание: Энергозависимая и энергонезависимая память базовые элементы статической и динамической памяти. Определение характеристик оперативной памяти и внешней памяти. Знать: Архитектуру памяти, взаимодействие с внешними устройствами ввода/ вывода, режимы адресации, регистры,	5	22	0	0	ОПК- 7.1,ОПК- 7.2,ОПК-7.3	Вопросы к самоподготовке

5 11. TVIC 0505	301-ПР I Свэд-22.plx						стр. 8
	машинные команды, различные типы внутренних данных. Характеристики оперативной памяти, характеристики внешней памяти. Уметь: Строить элементы статической памяти. Осуществлять подбор комплектующих ЭВМ. Владеть: Навыками построения триггера на макетной плате. Навыками сборки ЭВМ. /Ср/ Раздел 3.Установка ОС. Диагностика комплектующих ЭВМ. Язык программирования Assembler						
	Тема 4. Установка ОС. Диагностика комплектующих ЭВМ. Язык программирования Assembler. Арифметические команды в Assembler. Краткое содержание: Изучение особенностей установка ОС, установки драйверов устройств, установки утилит для диагностики устройств. Арифметические команды в Assembler. Команды пересылки и преобразования данных. Команды десятичной арифметики. Знать: Методику установки ОС, утилиты для диагностики комплектующих ЭВМ. Арифметические команды. Команды пересылки и преобразования данных. Команды десятичной арифметики; /Лек/	5	2	0	0	ОПК-7.1	Тестирование Устный опрос
	Лабораторная работа №6. Установка ОС. Краткое содержание: Установка ОС, установка драйверов устройств Уметь: Устанавливать ОС, устанавливать драйвера устройств, работать с утилитами для диагностики; применять арифметические команды, команды пересылки и преобразования данных, команды десятичной арифметики. Владеть: Навыками настройки ОС; навыками диагностики устройств; навыками решения задач на машинно-ориентированный язык программирования низкого уровня Assembler. /Лаб/	5	2	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
	Лабораторная работа 7. Диагностика комплектующих ЭВМ утилитами. Краткое содержание: Диагностика комплектующих ЭВМ утилитами Уметь: Устанавливать ОС, устанавливать драйвера устройств, работать с утилитами для диагностики; применять арифметические команды, команды пересылки и преобразования данных, команды десятичной арифметики.	5	2	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе

y11: WIE-09	0301-ПРТСвэд-22.plx Владеть: Навыками настройки ОС; навыками диагностики устройств;						стр. 9
	навыками днагностики устроисть, навыками решения задач на машинно-ориентированный язык программирования низкого уровня Assembler. /Лаб/						
3.4	Лабораторная работа №8 Арифметические команды и операции в Assembler. Краткое содержание: Решение задач на арифметические действия. Уметь: Устанавливать ОС, устанавливать драйвера устройств, работать с утилитами для диагностики; применять арифметические команды, команды пересылки и преобразования данных, команды десятичной арифметики. Владеть: Навыками настройки ОС; навыками диагностики устройств; навыками решения задач на машинно-ориентированный язык программирования низкого уровня Assembler. /Лаб/	5	2	0	0	ОПК- 7.2,ОПК-7.3	Отчет по лабораторной работе
3.5	Тема 4. Установка ОС. Диагностика комплектующих ЭВМ. Язык программирования Assembler. Арифметические команды в Assembler. Знать: Методику установки ОС, утилиты для диагностики комплектующих ЭВМ. Арифметические команды. Команды пересылки и преобразования данных. Команды десятичной арифметики. Уметь: Устанавливать ОС, устанавливать драйвера устройств, работать с утилитами для диагностики; применять арифметические команды, команды пересылки и преобразования данных, команды десятичной арифметики. Владеть: Навыками настройки ОС; навыками диагностики устройств; навыками решения задач на машинно-ориентированный язык программирования низкого уровня Assembler. /Ср/	5	22	0	0	ОПК- 7.1,ОПК- 7.2,ОПК-7.3	Вопросы к самоподготовке
3.6	Зачет с оценкой Знает методы настройки, наладки программно-аппаратных комплексов Умеет анализировать техническую документацию, производить настройку, наладку и тестирование программно-аппаратных комплексов Владеет способами проверки работоспособности программно-аппаратных комплексов /ЗаО/	5	0	0	0	ОПК- 7.1,ОПК- 7.2,ОПК-7.3	Тестирование, вопросы к зачету

Компьютерная технология обучения

Основана на использовании информационных технологий в учебном процессе. Реализация данной технологии осуществляется посредством компьютера и иных мультимедийных средств. Использование компьютерных технологий делает учебный процесс не только современным и познавательным, но интересным для обучающихся

Технология обучения в сотрудничестве

Технология обучения в сотрудничестве используется в образовательной практике для преодоления последствий индивидуального характера учебной деятельности субъектов и их стремлений исключительно к индивидуальным образовательным достижениям. Она позволяет обогатить опыт и приобрести через учебный труд те навыки совместимой деятельности, которые затем могут стать необходимыми в будущей профессиональной и социальной деятельности в течение жизни. Цель технологии состоит в формировании умений у субъектов образовательного процесса эффективно работать сообща во временных командах и группах и добиваться качественных образовательных результатов

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

СРС – планируемая учебная, учебно-исследовательская, научно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (возможно частичное непосредственное участие преподавателя при сохранении ведущей роли студентов). Целью СРС является овладение фундаментальными знаниями, профессиональными умениями и навыками по профилю будущей специальности, опытом творческой, исследовательской деятельности, развитие самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровней. Задачи СРС: систематизация и закрепление полученных теоретических знаний и практических умений студентов; углубление и расширение теоретической подготовки; формирование умений использовать нормативную, правовую, справочную документацию и специальную литературу; развитие познавательных способностей и активности студентов: творческой инициативы, самостоятельности, ответственности и организованности; формирование самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации; развитие исследовательских умений; использование материала, собранного и полученного в ходе самостоятельных занятий на практических занятиях, при написании курсовых и выпускной квалификационной работ, для эффективной подготовки к итоговым зачетам и экзаменам. Функции СРС: развивающая (повышение культуры умственного труда, приобщение к 10 творческим видам деятельности, обогащение интеллектуальных способностей студентов); информационно-обучающая (учебная деятельность студентов на аудиторных занятиях, неподкрепленная самостоятельной работой, становится мало результативной); ориентирующая и стимулирующая (процессу обучения придается ускорение и мотивация); воспитательная (формируются и развиваются профессиональные качества специалиста и гражданина); исследовательская (новый уровень профессиональнотворческого мышления).

Самостоятельная работа студентов является обязательным компонентом учебного процесса для каждого студента и определяется учебным планом. Виды самостоятельной работы студентов определяются при разработке рабочих программ и учебных методических комплексов дисциплин содержанием учебной дисциплины. При определении содержания самостоятельной работы студентов следует учитывать их уровень самостоятельности и требования к уровню самостоятельности выпускников для того, чтобы за период обучения искомый уровень был достигнут. Так, удельный вес самостоятельной работы при обучении в очной форме составляет до 50% от количества аудиторных часов, отведённых на изучение дисциплины, в заочной форме - количество часов, отведенных на освоение дисциплины, увеличивается до 90%. Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства педагога, но по его заданиям и под его контролем. Самостоятельная работа — это познавательная учебная деятельность, когда последовательность мышления студента, его умственных и практических операций и действий зависит и определяется самим студентом.

Самостоятельная работа студентов способствует развитию самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровня, что в итоге приводит к развитию навыка самостоятельного планирования и реализации деятельности. Целью самостоятельной работы студентов является овладение необходимыми компетенциями по своему направлению подготовки, опытом творческой и исследовательской деятельности. На основании компетентностного подхода к реализации профессиональных образовательных программ, видами заданий для самостоятельной работы являются:

- для овладения знаниями: чтение текста (учебника, первоисточника, дополнительной литературы), составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста, работа со словарями и справочниками, ознакомление с нормативными документами, учебно-исследовательская работа, использование аудио- и видеозаписей, компьютерной техники и информационно-телекоммуникационной сети Интернет и др.
- для закрепления и систематизации знаний: работа с конспектом лекции, обработка текста (учебника, первоисточника, дополнительной литературы, аудио и видеозаписей), повторная работа над учебным материалом, составление плана, составление таблиц для систематизации учебного материала, ответ на контрольные вопросы, заполнение рабочей тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, конспект-анализ и др.), завершение аудиторных практических работ и оформление отчётов по ним, подготовка мультимедиа сообщений/докладов к выступлению на семинаре (конференции), материалов-презентаций, подготовка реферата, составление библиографии, тематических кроссвордов, тестирование и др.
- для формирования умений: решение задач и упражнений по образцу, решение вариативных задач, выполнение чертежей, схем, выполнение расчетов (графических работ), решение ситуационных (профессиональных) задач, подготовка к деловым играм, проектирование и моделирование разных видов и компонентов профессиональной деятельности, рефлексивный анализ профессиональных умений с использованием аудио- и видеотехники и др.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений студентов.

6. ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

6.1. Перечень компетенций с указанием этапов формирования индикаторов их достижения в процессе освоения ОПОП

ОПК-7:Способен участвовать в настройке и наладке программно-аппаратных комплексов;

Недостаточный уровень:

Не знает методы настройки, наладки программно-аппаратных комплексов

Не умеет анализировать техническую документацию, производить настройку, наладку и тестирование программно-аппаратных комплексов

Не владеет способами проверки работоспособности программно-аппаратных комплексов

Пороговый уровень:

Знает некоторые методы настройки программно-аппаратных комплексов

Умеет анализировать техническую документацию программно-аппаратных комплексов

Владеет некоторыми способами проверки работоспособности программно-аппаратных комплексов

Продвинутый уровень:

Знает методы настройки программно-аппаратных комплексов

Умеет анализировать техническую документацию, производить настройку программно-аппаратных комплексов

Владеет основными способами проверки работоспособности программно-аппаратных комплексов

Высокий уровень:

Знает методы настройки, наладки программно-аппаратных комплексов

Умеет анализировать техническую документацию, производить настройку, наладку и тестирование программноаппаратных комплексов

Владеет всеми способами проверки работоспособности программно-аппаратных комплексов

6.2. Шкала оценивания в зависимости от уровня сформированности компетенций

Уровень сформированности компетенций

Характеристики индикаторов достижения компетенций	1. Недостаточный: компетенции не сформированы.	2. Пороговый: компетенции сформированы.	3. Продвинутый: компетенции сформированы.	4. Высокий: компетенции сформированы.
Знания:	Знания отсутствуют.	Сформированы базовые структуры знаний.	Знания обширные, системные.	Знания твердые, аргументированные, всесторонние.
Умения:	Умения не сформированы.	Умения фрагментарны и носят репродуктивный характер.	Умения носят репродуктивный характер применяются к решению типовых заданий.	Умения успешно применяются к решению как типовых, так и нестандартных творческих заданий.
Навыки:	Навыки не сформированы.	Демонстрируется низкий уровень самостоятельности практического навыка.	Демонстрируется достаточный уровень самостоятельности устойчивого практического навыка.	Демонстрируется высокий уровень самостоятельности, высокая адаптивность практического навыка.

Описание критериев оценивания

оттенные пригодина								
Обучающийся демонстрирует:	Обучающийся демонстрирует:	Обучающийся демонстрирует:	Обучающийся демонстрирует:					
- существенные пробелы в	- знания теоретического	- знание и понимание	- глубокие, всесторонние и					
знаниях учебного материала;	материала;	основных вопросов	аргументированные знания					
- допускаются	- неполные ответы на	контролируемого объема	программного материала;					
принципиальные ошибки при	основные вопросы, ошибки в	программного материала;	- полное понимание сущности					
ответе на основные вопросы	ответе, недостаточное	- твердые знания	и взаимосвязи					
билета, отсутствует знание и	понимание сущности	теоретического материала;	рассматриваемых процессов и					
понимание основных понятий	излагаемых вопросов;	-способность устанавливать и	явлений, точное знание					
и категорий;	- неуверенные и неточные	объяснять связь практики и	основных понятий в рамках					
- непонимание сущности	ответы на дополнительные	теории, выявлять	обсуждаемых заданий;					
дополнительных вопросов в	вопросы;	противоречия, проблемы и	- способность устанавливать и					
рамках заданий билета;	- недостаточное владение	тенденции развития;	объяснять связь практики и					
- отсутствие умения	литературой,	- правильные и конкретные,	теории;					
выполнять практические	рекомендованной программой	без грубых ошибок ответы на	- логически					
задания, предусмотренные	дисциплины;	поставленные вопросы;	последовательные,					
программой дисциплины;	- умение без грубых ошибок	- умение решать практические	содержательные, конкретные					
- отсутствие готовности	решать практические задания,	задания, которые следует	и исчерпывающие ответы на					
(способности) к дискуссии и	которые следует	выполнить;	все задания билета, а также					

низкая степень контактности.	выполнить.	- владение основной литературой, рекомендованной программой дисциплины;	дополнительные вопросы экзаменатора; - умение решать практические задания;
		- наличие собственной обоснованной позиции по обсуждаемым вопросам. Возможны незначительные оговорки и неточности в раскрытии отдельных положений вопросов билета, присутствует неуверенность в ответах на дополнительные вопросы.	- свободное использование в ответах на вопросы материалов рекомендованной основной и дополнительной литературы.
0 - 59 баллов	60 - 69 баллов	70 - 89 баллов	90 - 100 баллов
Оценка «незачет», «неудовлетворительно»	Оценка «зачтено/удовлетворительно», «удовлетворительно»	Оценка «зачтено/хорошо», «хорошо»	Оценка «зачтено/отлично», «отлично»

Оценочные средства, обеспечивающие диагностику сформированности компетенций, заявленных в рабочей программе по дисциплине (молулю) для проведения промежуточной аттестации

ОЦЕНИВАНИЕ УРОВНЯ ЗНАНИЙ: Теоретический блок вопросов. Уровень освоения программного материала, логика и грамотность изложения, умение самостоятельно обобщать и излагать материал.

1. Недостаточный уровень

Не знает методы настройки, наладки программно-аппаратных комплексов

Не умеет анализировать техническую документацию, производить настройку, наладку и тестирование программноаппаратных комплексов

Не владеет способами проверки работоспособности программно-аппаратных комплексов

2. Пороговый уровень

Знает некоторые методы настройки программно-аппаратных комплексов

Умеет анализировать техническую документацию программно-аппаратных комплексов

Владеет некоторыми способами проверки работоспособности программно-аппаратных комплексов

3. Продвинутый уровень

Знает методы настройки программно-аппаратных комплексов

Умеет анализировать техническую документацию, производить настройку программно-аппаратных комплексов

Владеет основными способами проверки работоспособности программно-аппаратных комплексов

4. Высокий уровень

Знает методы настройки, наладки программно-аппаратных комплексов

Умеет анализировать техническую документацию, производить настройку, наладку и тестирование программно-аппаратных комплексов

Владеет всеми способами проверки работоспособности программно-аппаратных комплексов

В случае, если сумма рейтинговых баллов, полученных при прохождении промежуточной аттестации составляет от 0 до 9 баллов, то зачет/ зачет с оценкой/ экзамен НЕ СДАН, независимо от итогового рейтинга по дисциплине.

В случае, если сумма рейтинговых баллов, полученных при прохождении промежуточной аттестации находится в пределах от 10 до 30 баллов, то зачет/ зачет с оценкой/ экзамен СДАН, и результат сдачи определяется в зависимости от итогового рейтинга по дисциплине в соответствии с утвержденной шкалой перевода из 100-балльной шкалы оценивания в 5-балльную.

Для приведения рейтинговой оценки по дисциплине по 100-балльной шкале к аттестационной по 5-балльной шкале в соответствии с Положением о балльно-рейтинговой системе оценки успеваемости студентов федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный университет технологий и управления имени К.Г. Разумовского (Первый казачий университет) используется следующая шкала:

Аттестационная оценка по дисциплине	Рейтинговая оценка по дисциплине
"ОТЛИЧНО"	90 - 100 баллов
"ХОРОШО"	70 - 89 баллов
"УДОВЛЕТВОРИТЕЛЬНО"	60 - 69 баллов
"НЕУДОВЛЕТВОРИТЕЛЬНО"	менее 60 баллов
"ЗАЧТЕНО"	более 60 баллов
"НЕ ЗАЧТЕНО"	менее 60 баллов

Тема 1. Архитектура ЭВМ Джона фон Неймана. Цифровой логический уровень. Вентильные схемы логических операций.

- 1. Компьютер это:
- а) устройство для работы с текстами;
- б) электронное вычислительное устройство для обработки чисел;
- в) устройство для хранения информации любого вида;
- г) многофункциональное электронное устройство для работы с информацией;
- 2. Какое устройство в компьютере служит для обработки информации?
- а) манипулятор "мышь"
- б) процессор
- в) клавиатура
- г) оперативная память
- 3. Скорость работы компьютера зависит от:
- а) тактовой частоты обработки информации в процессоре;
- б) наличия или отсутствия подключенного принтера;
- в) объема внешнего запоминающего устройства;
- г) объема обрабатываемой информации.
- 4. Тактовая частота процессора это:
- а) число двоичных операций, совершаемых процессором в единицу времени;
- б) число вырабатываемых за одну секунду импульсов, синхронизирующих работу узлов компьютера;
- в) число возможных обращений процессора к операционной памяти в единицу времени;
- г) скорость обмена информацией между процессором и ПЗУ.
- 5. Укажите наиболее полный перечень основных устройств:
- а) микропроцессор, сопроцессор, монитор;
- б) центральный процессор, оперативная память, устройства ввода/вывода;
- в) монитор, винчестер, принтер;
- г) АЛУ, УУ, сопроцессор;
- 6. Магистрально-модульный принцип архитектуры современных персональных компьютеров подразумевает такую логическую организацию его аппаратных компонентов, при которой:
- а) каждое устройство связывается с другими напрямую;
- б) каждое устройство связывается с другими напрямую, а также через одну центральную магистраль;
- в) все они связываются друг с другом через магистраль, включающую в себя шины данных, адреса и управления;
- г) связываются друг с другом в определенной фиксированной последовательности (кольцом);
- 7. Назовите устройства, входящие в состав процессора:
- а) оперативное запоминающее устройство, принтер;
- б) арифметико-логическое устройство, устройство управления;
- в) кэш-память, видеопамять;
- г) сканер, ПЗУ;
- 8. Процессор обрабатывает информацию:
- а) в десятичной системе счисления
- б) в двоичном коде
- в) в текстовом виде
- 9. Структура компьютера это:
- а) Комплекс электронных средств, осуществляющих обработку информации
- б) некоторая модель, устанавливающая состав, порядок и принципы взаимосвязи входящих в неё компонентов
- в) комплекс программных и аппаратных средств
- 10. Микропроцессор предназначен для:
- а) Управления работой компьютера и обработки данных
- б) ввода информации в ПК и вывода ее на принтер
- в) обработки текстовых данных
- 11. Формирует и подает во все блоки определенные сигналы управления –это:
- а) устройство управления
- б) Микропроцессорная память
- в) Арифметико- логическое устройство
- 12. Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы называется принципом ... памяти
- 13. Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка называется принципом ...
- 14. Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов команд называется принципом ...
- 15. Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Это принцип ...
- 16. Важнейшая часть ПК, содержащая его основные электронные компоненты...?
- а) Шина
- б) Чипсет
- в) Видеокарта
- г) Системная плата
- 17. Шина ввода-вывода
- а) Связаны с определенными участками процессора и позволяют записывать и читать данные из оперативной памяти
- б) Эти шины питают электричеством различные, подключенные к ним устройства
- в) Позволяет процессору взаимодействовать с периферийными устройствами
- г) Предназначена для передачи информации между процессором и основной памятью
- 10 Vamayanna nyyrayyanaa ayyyyayya aanyyyayayyayyayyayya

- 21. Что используют для уплотнения каналов связи?
- 22. Устройство, реализующее одну из логических операций, называется ...
- 23. Назовите устройство, которое способно запоминать цифровую информацию?
- 24. Каким кодом осуществляется выбор входа по его номеру мультиплексор?
- 25. С помощью чего в вычислительные устройства могут быть реализованы различные логические функции?
- 26. Назовите три элементарных логических элементов
- 27. Материальный носитель информации об электромагнитных процессах, происходящих в электрической цепи, в качестве которого используется обычно либо ток, либо напряжение называется ... сигнал
- 28. Кратковременное отклонение напряжение (тока) от некоторого начального уровня (в частном случае нулевого) называется ... импульс
- 29. Квантованный по уровню и дискретный по времени называется ... сигнал
- 30. величина сигнала, которого меняется с течением времени называется ... сигнал
- 31. Сигнал описывается непрерывной функцией без разрывов, называется ... сигнал
- 32. Единственный сигнал, который, проходя через линейную электрическую цепь, не искажается по форме, меняя лишь амплитуду и начальную фазу называется ... сигнал
- 33. Величина максимального импульсного отклонения напряжения от начального уровня
- 34. Интервал времени от момента появления сигнала до момента его окончания называется ... импульса
- 35. Импульс считается ..., если напряжение (ток) при его формировании увеличивается
- 36. Импульс считается ..., если напряжение (ток) при его формировании уменьшается
- 37. Разность начальных фаз двух синусоидальных сигналов одинаковой частоты называется ... сдвигом
- 38. Элемент на транзисторах, который может находиться в одном из двух устойчивых состояний (0 и 1) называется
- 39. Любой ... можно создать из трех основных логических элементов: И, ИЛИ, НЕ.
- 40. Память, основанная на триггерах, называется ... память
- 41. Триггер может служить ячейкой памяти, хранящей один ... информации
- 42. Электронная "кнопка" в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого, называется ...
- 43. Принцип ... памяти следующий: система металл-диэлектрик-полупроводник способна работать как конденсатор.
- 44. Как известно, ... способен некоторое время "держать" на себе электрический заряд

Тема 2. Совместимость центрального процессора с материнской платой.

- 45. Структурно ... можно представить как совокупность ячеек, разделенных на разряды для хранения в каждом из них бита информации.
- 46. Все ячейки памяти пронумерованы. Номер ячейки называется ее ...
- 47. Минимальная единица измерения информации, которая представляет собой двоичный знак двоичного алфавита
- 48. Единица количества информации в СИ, представляющая собой восьмиразрядный двоичный код
- 49. Числовая характеристика сигнала, не зависящая от его формы и содержания, и характеризующая неопределенность, которая исчезнет после получения сообщения в виде данного сигнала, называется ... информации
- 50. Преобразование информации из одной формы представления в другую называют...
- 51. Средством ... служит таблица соответствия знаковых систем, которая устанавливает взаимно-однозначное соответствие между знаками или группой знаков двух различных знаковых систем
- 52. Операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы называется...
- 53. Информация в компьютере представлена в ... коде
- 54. Каждая цифра машинного двоичного кода несет количество информации, равное одному ...
- 55. Знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами, называется ...
- 56. Раздел математической логики, в котором изучаются логические операции над высказываниями называется ...
- 57. Коньюнкция двух логических высказываний истинна тогда и только тогда, когда оба высказываний ...
- 58. Дизъюнкция двух логических переменных ложна тогда и только тогда, когда оба высказывания ...
- 59. Инверсия логической переменной истинна, если переменная ...
- 60. Логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации, называется ...
- 61. Набор логических элементов, широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов, называются ...
- 62. Логический элемент способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях.
- 63. В основном ... используется в регистрах процессора

Тема 3. Статическая и динамическая память. Триггер на физическом уровне. Совместимость оперативной памяти с материнской платой.

- 64. Объем оперативной памяти определяет:
- а) какой объем информации может храниться на жестком диске .
- б) какой объем информации может обрабатываться без обращений к жесткому диску.
- в) какой объем информации можно вывести на печать.
- 65. Постоянное запоминающее устройство служит для:
- а) сохранения программ начальной загрузки компьютера и тестирования его узлов;
- б) хранения программы пользователя во время работы;
- в) записи особо ценных прикладных программ;
- г) хранения постоянно используемых программ;
- 66. Во время исполнения прикладная программа хранится:

- в) мышь;
- г) принтер;
- 69. Для долговременного хранения информации служит:
- а) оперативная память;
- б) процессор;
- в) внешний носитель;
- г) дисковод;
- 70. Процесс хранения информации на внешних носителях принципиально отличается от процесса хранения информации в оперативной памяти:
- а) тем, что на внешних носителях информация может храниться после отключения питания компьютера;
- б) объемом хранимой информации;
- в) различной скоростью доступа к хранимой информации;
- г) способами доступа к хранимой информации.
- 71. При отключении компьютера информация:
- а) исчезает из оперативной памяти;
- б) исчезает из постоянного запоминающего устройства;
- в) стирается на «жестком диске»;
- г) стирается на магнитном диске;
- 72. Из какого списка устройств можно составить работающий персональный компьютер?
- а) процессор, монитор, клавиатура.
- б) процессор, оперативная память, монитор, клавиатура.
- в) винчестер, монитор, мышь.
- 73. К внешней памяти не относятся:
- а) ОЗУ
- б) ПЗУ
- в) Жесткий лиск
- г) Кэш-память
- 74. ПЗУ служит для:
- а) для хранения и считывания информации
- б) для долговременного хранения информации
- +в) для хранения постоянной программной информации
- 75. Триггер это устройство для ... цифровой информации
- 76. Регистр это упорядоченная последовательность ...
- 77. Два устойчивых состояния триггера ...
- 78. Назовите недостающий вид регистров: параллельный, последовательный...
- 79. Регистр, в котором осуществляется сдвиг числа называется регистром ...

Тема 4. Установка ОС. Диагностика комплектующих ЭВМ. Язык программирования Assembler. Арифметические команды в Assembler.

- 80. Наилучшая температура видеокарты при прохождении при прохождении теста утилитой «FurMark» составляет ...
- 81. Нежелательная температура видеокарты при прохождении при прохождении теста утилитой «FurMark» составляет ...
- 82. Для тестирования работы какого устройства используется утилита «HDTune»?
- 83. Нажатие какой клавиши позволит загрузиться в безопасном режиме?
- 84. Для каких целей используется утилита BlueScreenView?
- 85. Первым пунктом в рекомендуемом порядке сборки компьютера является ...
- 86. С чего рекомендуется выполнять диагностику компьютера?
- 87. Назовите способ сброски BIOS, при этом сбрасываются не только настройки BIOS, что можно сделать через меню Setup, но и так называемая энергозависимая память CMOS.
- 88. Назовите главный признак сброса BIOS.
- 89. По типу приёма и выдачи информации различают типы регистров:
- а) Сдвиговые регистры, параллельные регистры
- б) Сегментные регистры, управляющие регистры
- в) Индексные регистры, флаговые регистры
- г) Все варианты верны
- 90. Ячейка памяти внутри СРU, в каждой из которых можно хранить одно число, называется ...
- 91. Регистры ... служат для хранения промежуточных вычислений
- 92. Регистр АХ называется ...
- 93. Регистр ВХ называется ...
- 94. Регистр СХ называется ...
- 95. Регистр DX называется ... 96. Регистр CS называется ...
- 97. Регистр ВР называется ...
- 98. Регистр SP называется ...
- 99. Регистр SI называется ...
- 100. Команда для сложения двух чисел называется ...
- 101. команда для вычитания одного числа из другого называется ...
- 102. Инкремент в ассемблере называется ...
- 103. Декремент в ассемблере называется ...
- 104. Команда для изменения знака операнда называется ...
- 105. Команда умножения чисел без знака называется ...
- 100 Tr -----

- 108. Команда деления чисел со знаком называется ...
- 109. Ничего не делающая команда называется ...

Вопросы для самоподготовки

Тема 1. Архитектура ЭВМ Джона фон Неймана. Цифровой логический уровень. Тема 2. Вентильные схемы логических операций.

- 1. Опишите электронную схему логической операции И
- 2. Опишите электронную схему логической операции ИЛИ
- 3. Опишите электронную схему логической операции НЕ
- 4. Приведите принципы построения электронных схем логических операций
- 5. Опишите схему одноразрядного полусумматора.
- 6. Опишите схему одноразрядного полного сумматора
- 7. Опишите схему многоразрядного сумматора и АЛУ
- 8. Приведите принципы построения полусумматора, сумматора
- 9. Материальный носитель информации об электромагнитных процессах, происходящих в электрической цепи, в качестве которого используется обычно либо ток, либо напряжение называется ... сигнал
- 10. Кратковременное отклонение напряжение (тока) от некоторого начального уровня (в частном случае нулевого) называется ... импульс

Тема 2. Совместимость центрального процессора с материнской платой.

- 1. Расскажите про тактовую частоту процессора
- 2. Укажите наиболее полный перечень основных устройств:
- 3. Опишите магистрально-модульный принцип архитектуры современных персональных компьютеров
- 4. Назовите устройства, входящие в состав процессора:
- 5. В каком виде процессор обрабатывает информацию?
- 6. Определите к какому принципу фон-Неймана относится «Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы»
- 7. Расскажите про чипсет
- 8. Приведите основные характеристики процессора
- 9. Приведите основные характеристики материнской платы
- 10. Определите основные критерии совместимости материнской платы и процессора

Тема 3. Статическая и динамическая память. Тригтер на физическом уровне. Совместимость оперативной памяти с материнской платой.

- 1. Раскройте форм фактор поддерживаемой памяти
- 2. Определите тип поддерживаемой памяти
- 3. Определите количество каналов памяти
- 4. Определите максимальную частоту памяти (JEDEC/без разгона)
- 5. Каким образом определить тип, частоту, пропускную способность, количество каналов и максимальный объем оперативной памяти для процессора Intel Core i3-10105F, 4x3.7 ГГц
- 6. Рассчитайте какого типа и какой частоты необходимо подобрать память для получения максимально эффективного объема ОЗУ для процессора Intel Core i3-10105F, 4x3.7 ГГц
- 7. Определите потребляемую мощность SSD диска, если известно потребляемое напряжение 3,3 В и сила тока 1A. P=U*I; P=3,3*1=3,3 Вт
- 8. Определите потребляемую мощность двух модулей оперативной памяти, если известно потребляемое напряжение одного модуля 1,5 В и сила тока 0,5 А.

P=(U*I)*2; P=(1,5*0,5)*2=1,5 BT

- 9. Расскажите про регистровую память
- 10. Расскажите про тайминги

Тема 4. Установка ОС. Диагностика комплектующих ЭВМ. Язык программирования Assembler. Арифметические команды в Assembler.

- 1. Назовите главный признак сброса BIOS.
- 2. При каком напряжении батареи на материнской плате необходимо производить ее замену?
- 3. Назовите основное правило проверки блока питания.
- 4. Наилучшая температура видеокарты при прохождении при прохождении теста утилитой «FurMark» составляет ...
- 5. Приведите команды передачи управления в Assembler
- 6. Приведите работу с файлами в Assembler
- 7. Приведите основные директивы ассемблера
- 8. Ячейка памяти внутри СРU, в каждой из которых можно хранить одно число, называется ...
- 9. Команда для сложения двух чисел называется ...
- 10. Команда для вычитания одного числа из другого называется ...

Вопросы к устному опросу

Тема 1. Архитектура ЭВМ Джона фон Неймана. Цифровой логический уровень. Тема 2. Вентильные схемы логических операций.

- 1. Расскажите историю развития вычислительных машин
- 2. Расскажите про поколения ЭВМ
- 3. Приведите обзор устройства и основные принципы работы ЭВМ
- 4. Расскажите о понятии архитектуры ЭВМ
- 5. Приведите обзор основных компонентов современной ЭВМ

- 2. Расскажите про сокет материнской платы
- 3. Расскажите про чипсет материнской платы
- 4. Расскажите про совместимые ядра процессоров
- 5. Рассчитайте мощность блока питания, необходимого для компьютера Intel Core i3-10105F, 4x3.7 ГГц, 16 ГБ DDR4 (8GB G.Skill RIPJAWS V 3200MHz, количество планок памяти 2), GeForce GTX 1050 Ti, SSD 512 ГБ (M.2 AGI AI198).
- 6. Расскажите про ядра процессоров
- 7. Определите максимальное число потоков
- 8. Расскажите про объем кэша
- 9. Определите базовая частота процессора
- 10. Определите тепловыделение (ТДР) процессора

Тема 3. Статическая и динамическая память. Тригтер на физическом уровне. Совместимость оперативной памяти с материнской платой.

- 1. Расскажите про энергозависимую и энергонезависимую память
- 2. Определите базовые элементы статической и динамической памяти
- 3. Расскажите про архитектуру памяти
- 4. Расскажите про взаимодействие с внешними устройствами ввода/ вывода
- 5. Расскажите про режимы адресации, регистры, машинные команды
- 6. Расскажите про различные типы внутренних данных
- 7. Расскажите про архитектуру памяти, взаимодействие с внешними устройствами ввода/ вывода
- 8. Определите режимы адресации, регистры, машинные команды
- 9. Приведите различные типы внутренних данных
- 10. Расскажите про обработчики прерываний и исключительных состояний

Тема 4. Установка ОС. Диагностика комплектующих ЭВМ. Язык программирования Assembler. Арифметические команды в Assembler.

- 1. Приведите арифметические команды Assembler
- 2. Приведите команды пересылки и преобразования данных
- 3. Приведите команды десятичной арифметик
- 4. Расскажите про пересылку данных в Assembler
- 5. Нежелательная температура видеокарты при прохождении при прохождении теста утилитой «FurMark» составляет ...
- 6. Для тестирования работы какого устройства используется утилита «HDTune»?
- 7. Для каких целей используется утилита BlueScreenView?
- 8. С чего рекомендуется выполнять диагностику компьютера?
- 9. Обязательное действие, которое необходимо совершить до чистки компьютера
- 10. Назовите одну из частых причин перегрева процессора и сбоев ПК

Задания к лабораторной работе №1. Логические операции. Логические законы.

Упростить выражение. Проверить результат с помощью таблицы истинности.

- 1. y=x1 И (1 ИЛИ x2) И x1 ИЛИ x2
- 2. у=х1 И (1 ИЛИ х2) И НЕ(х1 ИЛИ х2)
- 3. y=HE(x1 И (1 ИЛИ x2)) И НЕ(x1 ИЛИ x2)
- 4. y=HE x1 ИЛИ x1 И (HE x2 И x2)
- 5. y=HE(x1 ИЛИ x2 ИЛИ HE(x1 И x2))

Задания к лабораторной работе №2. Логические операции на физическом уровне.

- 1. Собрать логический элемент И на макетной плате;
- 2. Собрать логический элемент ИЛИ на макетной плате;
- 3. Собрать логический элемент НЕ на макетной плате.

Задания к лабораторной работе №3. Подбор материнской платы и процессора

- 1. Подберите материнскую плату для процессора AMD Ryzen 5 5600X OEM;
- 2. Подберите материнскую плату для процессора Intel Core i3-10105 OEM
- 3. Подберите процессора для материнской платы Esonic G41CPL3
- 4. Подберите процессора для материнской платы GIGABYTE B550 AORUS ELITE V2

Задания к лабораторной работе №4. Построение триггера на макетной плате.

- 1. Собрать RS тригтер (без управления кнопками) на макетной плате;
- 2. Собрать RS триггер кнопочным управлением на макетной плате.

Задания к лабораторной работе №5. Подбор комплектующих ЭВМ. Сборка ЭВМ.

- 1. Определите потребляемую мощность SSD диска, если известно потребляемое напряжение 3,3 В и сила тока 1А.
- 2. Определите потребляемую мощность двух модулей оперативной памяти, если известно потребляемое напряжение одного модуля 1,5 В и сила тока 0,5 А.
- 3. Рассчитайте мощность блока питания, необходимого для компьютера Intel Core i3-10105F, 4x3.7 ГГц, 16 ГБ DDR4 (8GB G.Skill RIPJAWS V 3200MHz, количество планок памяти 2), GeForce GTX 1050 Ti, SSD 512 ГБ (M.2 AGI AI198).
- 4. Определите тип, частоту, пропускную способность, количество каналов и максимальный объем оперативной памяти для процессора Intel Core i3-10105F, 4x3.7 ГГц

- 1. В чем заключается подготовка к тестам комплектующих?
- 2. Опишите технологию тестирования видеокарты утилитами «FurMark» и «3DMark»
- 3. Опишите технологию тестирования процессора утилитами «CPU-Z» и «HWiNFO»
- 4. Опишите технологию включения функции записи дампов памяти утилитой sysdm.cpl
- 5. Опишите технологию анализа дампов памяти утилитой «BlueScreenView»
- 6. Опишите технологию тестирования оперативной памяти утилитой «Memtest 86+»

Задания к лабораторной работе №8. Арифметические команды и операции в Assembler.

- 1. Найдите сумму двух чисел в Assembler
- 2. Поменяйте местами значения операндов и найдите их сумму
- 3. Увеличьте значение операнда на 1 операцией инкремента
- 4. Укажите флаг переноса при сложении чисел со знаком
- 5. Найдите разность двух чисел в Assembler

6.4. Оценочные средства промежуточной аттестации.

Вопросы к зачету:

ОПК-7

Вопросы для проверки уровня обученности "знать":

- 1. Назовите вид сигнала процедуры самотестирования (Power-On Self Test POST) при котором ошибок не обнаружено, загрузка системы продолжается.
- 2. Назовите вид сигнала AWARD BIOS при котором выявлена «Ошибка оперативной памяти.
- 3. Назовите вид сигнала AWARD BIOS при котором выявлена «Не обнаружен видеоадаптер или ошибка видеопамяти.
- 4. Какому значению составляет напряжение батареи на материнской плате
- 5. В каком меню BIOS осуществляется приоритет загрузки устройств?
- В каком меню вто в осуществляется приоритет загрузки устроиств.
 Каким образом осуществляется запуск блока питания компьютера?
- 7. Какая утилита используется для проверки или включения функции записи дампов памяти средствами Windows?
- 8. В каком режиме необходимо пробовать загрузить компьютер, если он не загружается в обычном режиме?
- 9. Для тестирования работы какого устройства используются утилиты «FurMark» и «3DMark»?
- 10. Назовите вид сигнала Compaq BIOS при котором выявлена «Ошибка инициализации видеокарты. Проверьте правильность установки видеокарты»
- 11. Назовите вид сигнала Compaq BIOS при котором выявлена «Неисправность оперативной памяти.

Перезагрузитесь через Reset»

- 12. Назовите вид сигнала Compaq BIOS при котором выявлена «Ошибка оперативной памяти, попробуйте перезагрузиться»
- 13. Какому напряжению соответствует желтый и черный цвета проводов на блоке питания компьютера?
- 14. Какому напряжению соответствует красный и черный цвета проводов на блоке питания компьютера?
- 15. Какому напряжению соответствует оранжевый и черный цвета проводов на блоке питания компьютера?

Вопросы для проверки уровня обученности "уметь":

- 1. Нажатие какой клавиши позволит загрузиться в безопасном режиме?
- 2. Для каких целей используется утилита BlueScreenView?
- 3. Первым пунктом в рекомендуемом порядке сборки компьютера является ...
- 4. С чего рекомендуется выполнять диагностику компьютера?
- 5. Обязательное действие, которое необходимо совершить до чистки компьютера
- 6. Опишите последовательность разборки компьютера
- 7. В чем заключается особенность чистки блока питания?
- 8. Одна из частых причин перегрева процессора и сбоев ПК
- 9. Назовите способ сброски BIOS, при этом сбрасываются не только настройки BIOS, что можно сделать через меню Setup, но и так называемая энергозависимая память CMOS.
- 10. Назовите главный признак сброса BIOS.
- 11. При каком напряжении батареи на материнской плате необходимо производить ее замену?
- 12. Назовите основное правило проверки блока питания.
- 13. Какому значению соответствует наилучшая температура видеокарты при прохождении при прохождении теста утилитой «FurMark»?
- 14. Какому значению соответствует нежелательная температура видеокарты при прохождении при прохождении теста утилитой «FurMark»?
- 15. Для тестирования работы какого устройства используется утилита «HDTune»?

Вопросы для проверки уровня обученности "владеть":

- 1. Определите потребляемую мощность SSD диска, если известно потребляемое напряжение 3,3 В и сила тока 1А.
- 2. Определите потребляемую мощность двух модулей оперативной памяти, если известно потребляемое напряжение одного модуля 1,5 В и сила тока 0,5 А.
- 3. Реализуйте и опишите комплексный тест блока питания компьютера на просадку напряжения
- 4. Осуществите и опишите тестирование видеокарты утилитами «FurMark» и «3DMark»
- 4. Осуществите и опишите тестирование видеокарты утилитами «CPU-Z» и «HWiNFO»
- 6. Рассчитайте мощность блока питания, необходимого для компьютера Intel Core i3-10105F, 4x3.7 ГГц, 16 ГБ DDR4 (8GB G.Skill RIPJAWS V 3200MHz, количество планок памяти 2), GeForce GTX 1050 Ti, SSD 512 ГБ (M.2 AGI AI198).
- 7. Напишите программу на языке Ассемблер: "Найти сумму двух чисел, если число 5 хранится в регистре АХ, число 4 хранится в регистре ВХ. Результат запишите в регистр АХ".
- 8. Напишите программу на языке Ассемблер: "Найти частное лвух чисел. если число 10 хранится в регистре АХ.

Итоговое тестирование: 1. Вид сигнала процедуры самотестирования (Power-On Self Test – POST) при котором ошибок не обнаружено загрузка системы продолжается. 1 короткий 1 короткий + 1 длинный 1 длинный + 2 коротких 1 короткий + 2 длинных
2. Назовите вид сигнала AWARD BIOS при котором выявлена «Ошибка оперативной памяти. 1 короткий 1 длинный 1 длинный 1 длинный + 2 коротких 1 короткий + 2 длинных
3. Назовите вид сигнала AWARD BIOS при котором выявлена «Не обнаружен видеоадаптер или ошибка видеопамяти. 1 короткий 1 короткий + 1 длинный 1 длинный + 2 коротких 1 короткий + 2 длинных
 4. Напряжение батареи на материнской плате составляет 3 В 5 В 12 В 1,5 В
5. Нежелательная температура видеокарты при прохождении при прохождении теста утилитой «FurMark» составляет 80 0C 60 0C 70 0C 75 0C
6. Для тестирования работы какого устройства используется утилита «HDTune» жесткий диск звуковая карта видеокарта процессор
7. Какому напряжению соответствует желтый и черный цвета проводов на блоке питания компьютера 3 В 5 В 12 В 1,5 В
8. Какому напряжению соответствует красный и черный цвета проводов на блоке питания компьютера 3 В 5 В 12 В 1,5 В
9. Какому напряжению соответствует оранжевый и черный цвета проводов на блоке питания компьютера 3,3 В 5 В 12 В 1,5 В
10. Нажатие какой клавиши позволит загрузиться в безопасном режиме F8 F1 F2 Del
11. Для каких целей используется утилита BlueScreenView для анализа дампов памяти звуковая карта видеокарта процессор

12. Наилучшая температура видеокарты при прохождении при прохождении теста утилитой «FurMark» составляет

УП: Me-090301-ПРТСвэд-22.plx 60 0С 70 0С 50 0С
13. Определите потребляемую мощность SSD диска, если известно потребляемое напряжение 3,3 В и сила тока 1А. 1 Вт 3,3 Вт 3 Вт 5 Вт
14. Определите потребляемую мощность двух модулей оперативной памяти, если известно потребляемое напряжение одного модуля 1,5 В и сила тока 0,5 А. 1 Вт 2 Вт 1,5 Вт 3 Вт
15. Определите скорость обращения к памяти процессора, если объем одной планки памяти будет 16 Гб, то при частоте памяти 2666 МГц 32 Гб/с 42,6 Гб/с 64 Гб/с 64 Гб/с
6.5. Примерная тематика курсовых работ (проектов) Учебным планом не предусмотрено
6.6. Методические указания для обучающихся по освоению дисциплины (модуля) Методические рекомендации по работе с конспектом лекций

Просмотрите конспект сразу после занятий. Пометьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя предлагаемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь на текущей консультации или на ближайшей лекции за помощью к преподавателю. Каждую неделю рекомендуется отводить время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Работа с рекомендованной литературой:

При работе с основной и дополнительной литературой пелесообразно придерживаться такой последовательности. Сначала прочитать весь заданный текст в быстром темпе. Цель такого чтения заключается в том, чтобы создать общее представление об изучаемом материале, понять общий смысл прочитанного. Затем прочитать вторично, более медленно, чтобы в ходе чтения понять и запомнить смысл каждой фразы, каждого положения и вопроса в целом. Чтение приносит пользу и становится продуктивным, когда сопровождается записями. Это может быть составление плана прочитанного текста, тезисы или выписки, конспектирование и др. Выбор вида записи зависит от характера изучаемого материала и целей работы с ним. Если содержание материала несложное, легко усваиваемое, можно ограничиться составлением плана. Если материал содержит новую и трудно усваиваемую информацию, целесообразно его законспектировать. План – это схема прочитанного материала, перечень вопросов, отражающих структуру и последовательность материала. Конспект – это систематизированное, логичное изложение материала источника. Различаются четыре типа конспектов: - план-конспект – это развернутый детализированный план, в котором по наиболее сложным вопросам даются подробные пояснения, текстуальный конспект – это воспроизведение наиболее важных положений и фактов источника, - свободный конспект – это четко и кратко изложенные основные положения в результате глубокого изучения материала, могут присутствовать выписки, цитаты, тезисы; часть материала может быть представлена планом, - тематический конспект – составляется на основе изучения ряда источников и дает ответ по изучаемому вопросу. В процессе изучения материала источника и составления конспекта нужно обязательно применять различные выделения, подзаголовки, создавая блочную структуру конспекта. Это делает конспект легко воспринимаемым и удобным для работы.

Методические рекомендации по подготовке к практическим занятиям

Практические занятия представляют особую форму сочетания теории и практики. Их назначение – углубление проработки
теоретического материала предмета путем регулярной и планомерной самостоятельной работы студентов на протяжении
всего курса. Процесс подготовки к практическим занятиям включает изучение нормативных документов, обязательной и
дополнительной литературы по рассматриваемому вопросу. Непосредственное проведение практического занятия
предполагает, например: индивидуальные выступления студентов с сообщениями по какому-либо вопросу изучаемой
темы; □ фронтальное обсуждение рассматриваемой проблемы, обобщения и выводы; □ решение задач и упражнений по
образцу; \square решение вариантных задач и упражнений; \square решение ситуационных производственных (профессиональных)
задач; 🗆 проектирование и моделирование разных видов и компонентов профессиональной деятельности. 🗆 выполнение
контрольных работ; пработу с тестами. При подготовке к практическим занятиям студентам рекомендуется: внимательно
ознакомиться с тематикой практического занятия; прочесть конспект лекции по теме, изучить рекомендованную литературу;
составить краткий план ответа на каждый вопрос практического занятия; проверить свои знания, отвечая на вопросы для
самопроверки; если встретятся незнакомые термины, обязательно обратиться к словарю и зафиксировать их в тетради. Все
письменные задания выполнять в рабочей тетради. Практические занятия развивают у студентов навыки

самостоятельной работы по решению конкретных задач.

Методические рекомендации по подготовке к лабораторным работам

Лабораторные работы представляют одну из форм освоения теоретического материала с одновременным формированием
практических навыков в изучаемой дисциплине. Их назначение – углубление проработки теоретического материала,
формирование практических навыков путем регулярной и планомерной самостоятельной работы студентов на протяжении
всего курса. Процесс подготовки к лабораторным работам включает изучение нормативных документов, обязательной и
дополнительной литературы по рассматриваемому вопросу. Непосредственное проведение лабораторной работы
предполагает: изучение теоретического материала по теме лабораторной работы (по вопросам изучаемой темы);
выполнение необходимых расчетов и экспериментов; оформление отчета с заполнением необходимых таблиц,
построением графиков, подготовкой выводов по проделанным экспериментам и теоретическим расчетам; \square по каждой
лабораторной работе проводится контроль: проверяется содержание отчета, проверяется усвоение теоретического
материала. Контроль усвоения теоретического материала является индивидуальным.

Методические указания по выполнению отчёта к лабораторным работам

Основным требованием по выполнению лабораторных и практических работ является полное исчерпывающее описание всей проделанной работы, позволяющее судить о полученных результатах, степени выполнения и профессиональной подготовки студентов.

Методические указания обеспечивают комплексный подход в учебной работе студентов, единство и преемственность требований к оформлению результатов работы на разных этапах обучения. С единых позиций приведены основные требования по структуре, оформлению и содержанию отчета по лабораторным и практическим работам.

Структура отчёта:

- цель работы;
- краткие теоретические сведения;
- ход выполнения работы;
- выводы.

Дополнительными элементы:

- приложения;
- библиографический список.

Требования к содержанию отчёта:

1. Титульный лист

В верхнем поле листа указывают полное наименование учебного заведения.

В среднем поле указывается вид работы, в данном случае лабораторная или практическая работа с указанием курса, по которому она выполнена, и ниже ее название. Название работы приводится без слова тема и в кавычки не заключается. Далее ближе к правому краю титульного листа указывают фамилию, инициалы и группу учащегося, выполнившего работу, а также фамилию, инициалы преподавателя, принявшего работу.

В нижнем поле листа указывается место выполнения работы и год ее написания (без слова год).

- 2. Цель работы должна отражать тему работы, а также конкретные задачи, поставленные студенту на период выполнения работы. По объему цель работы в зависимости от сложности и многозадачности работы составляет от нескольких строк до 0,5 страницы.
- 3. Краткие теоретические сведения. В этом разделе излагается краткое теоретическое описание изучаемой в работе темы. Материал раздела не должен копировать содержание методического пособия или учебника по данной теме, а ограничивается изложением основных понятий, требующихся для дальнейшей обработки полученных результатов. Объем литературного обзора не должен превышать 1/3 части всего отчета.
- 4. Ход выполнения работы. В данном разделе подробно излагается методика выполнения работы, процесс получения данных и способ их обработки. Если используются стандартные пакеты компьютерных программ для обработки экспериментальных результатов, то необходимо обосновать возможность и целесообразность их применения, а также подробности обработки данных с их помощью.
- 5. Выводы по работе кратко излагаются результаты работы, полученные в результате выполнения работы, а также краткий анализ полученных результатов.

Отчет по лабораторной работе оформляется на листе формата A4. Допускается оформление отчета по лабораторной работе в электронном виде средствами Microsoft Office. Текст работы должен быть напечатан через полтора интервала шрифтом Times New Roman, кегль — 12. Поля должны оставаться по всем четырем сторонам печатного листа: левое — не менее 30 мм, правое — не менее 10, нижнее — не менее 20 и верхнее — не 15 мм.

Для защиты лабораторной работы студент должен подготовить отчет, провести самостоятельную работу, иметь отметку о проверенном отчете.

Результаты определяются по пятибалльной системе оценок.

Методические рекомендации по выполнению реферата

Реферат – письменная работа объемом 8–10 страниц. Это краткое и точное изложение сущности какого-либо вопроса, темы. Тему реферата студент выбирает из предложенных преподавателем или может предложить свой вариант. В реферате нужны развернутые аргументы, рассуждения, сравнения. Содержание темы излагается объективно от имени автора. Функции реферата. Информативная, поисковая, справочная, сигнальная, коммуникативная. Степень выполнения этих функций зависит от содержательных и формальных качеств реферата и для каких целей их использует. Требования к языку реферата. Должен отличаться точностью, краткостью, ясностью и простотой. Структура реферата:

- 1. Титульный лист
- 2. Оглавление (на отдельной странице). Указываются названия всех разделов (пунктов плана) реферата и номера страниц, указывающие начало этих разделов в тексте реферата.
- 3. Введение. Аргументируется актуальность исследования, т.е. выявляется практическое и теоретическое значение данного исследования. Далее констатируется, что сделано в данной области предшественниками, перечисляются положения, которые должны быть обоснованы. Обязательно формулируются цель и задачи реферата.
- 4. Основная часть. Подчиняется собственному плану, что отражается в разделении текста на главы, параграфы, пункты. План основной части может быть составлен с использованием различных методов группировки материала. В случае если используется чья-либо неординарная мысль, идея, то обязательно нужно сделать ссылку на того автора, у кого взят данный материал.
- 5. Заключение. Последняя часть научного текста. В краткой и сжатой форме излагаются полученные результаты, представляющие собой ответ на главный вопрос исследования.
- 6. Приложение. Может включать графики, таблицы, расчеты.
- 7. Библиография (список литературы). Указывается реально использованная для написания реферата литература. Названия книг располагаются по алфавиту с указанием их выходных данных. Общие требования к построению, содержанию и оформлению».

При проверке реферата оцениваются:

при проверке реферата оцениваются.
🗆 знание фактического материала, усвоение общих представлений, понятий, идей;
□ характеристика реализации цели и задач исследования;
□ степень обоснованности аргументов и обобщений;
□ качество и ценность полученных результатов;
□ использование литературных источников;
□ культура письменного изложения материала;
□ культура оформления материалов работы.
Правила написания научных текстов (реферат, дипломная работа):
n.

Здесь приводятся рекомендации по консультированию студентов относительно данного вида самостоятельной работы. Во время консультаций руководителю следует предложить к обсуждению следующие вопросы.

- Какова истинная цель Вашего научного текста это поможет Вам разумно распределить свои силы и время.
- Важно разобраться, кто будет «читателем» Вашей работы.
- Начинать писать серьезную работу следует не раньше, чем возникнет ощущение, что по работе с источниками появились идеи, которыми можно поделиться.
- Должна быть идея, а для этого нужно научиться либо относиться к разным явлениям и фактам несколько критически (своя идея как иная точка зрения), либо научиться увлекаться какими-то известными идеями, которые нуждаются в доработке (идея как оптимистическая позиция и направленность на дальнейшее совершенствование уже известного).
- Писать следует ясно и понятно, стараясь основные положения формулировать четко и недвусмысленно, а также стремясь структурировать свой текст.
- Объем текста и различные оформительские требования во многом зависят от принятых в конкретном учебном заведении порядков.

Методические рекомендации по выполнению контрольных работ

Контрольная работа выполняется по вариантам. На бланке указывается факультет, курс, группа, ФИО студента. Вопросы строятся на основе тестовых и ситуативных заданий. В тестовых заданиях, выбирается правильный(ые) ответ(ы). При решении ситуативных заданий выбирается правильная последовательность действий в рассматриваемой ситуации. Проверка контрольной работы позволяет выявить и исправить допущенные студентами ошибки, указать, какие вопросы дисциплины ими недостаточно усвоены и требуют доработки. Студент должен внимательно ознакомиться с письменными замечаниями преподавателя и приступить к их исправлению, для чего еще раз повторить соответствующий материал.

Методические рекомендации по подготовке к коллоквиуму

Коллоквиумом называется собеседование преподавателя и студента по заранее определенным контрольным вопросам. Целью коллоквиума является формирование у студента навыков анализа теоретических проблем на основе самостоятельного изучения учебной и научной литературы. На коллоквиум выносятся крупные, проблемные, нередко спорные теоретические вопросы. Упор делается на монографические работы профессора-автора данного спецкурса. От студента требуется:

- владение изученным в ходе учебного процесса материалом, относящимся к рассматриваемой проблеме;
- знание разных точек зрения, высказанных в научной литературе по соответствующей проблеме, умение сопоставлять их между собой;
- наличие собственного мнения по обсуждаемым вопросам и умение его аргументировать.

Коллоквиум - это не только форма контроля, но и метод углубления, закрепления знаний студентов, так как в ходе собеседования преподаватель разъясняет сложные вопросы, возникающие у студента в процессе изучения данного источника. Однако коллоквиум не консультация и не экзамен. Его задача добиться глубокого изучения отобранного материала, пробудить у студента стремление к чтению дополнительной социологической литературы. Подготовка к коллоквиуму начинается с установочной консультации преподавателя, на которой он разъясняет развернутую тематику проблемы, рекомендует литературу для изучения и объясняет процедуру проведения коллоквиума. Как правило, на

самостоятельную подготовку к коллоквиуму студенту отводится 3-4 недели. Методические указания состоят из рекомендаций по изучению источников и литературы, вопросов для самопроверки и кратких конспектов ответа с перечислением основных фактов и событий, относящихся к пунктам плана каждой темы. Это должно помочь студентам целенаправленно организовать работу по овладению материалом и его запоминанию. При подготовке к коллоквиуму следует, прежде всего, просмотреть конспекты лекций и практических занятий и отметить в них имеющиеся вопросы коллоквиума. Если какие-то вопросы вынесены преподавателем на самостоятельное изучение, следует обратиться к учебной литературе, рекомендованной преподавателем в качестве источника сведений.

Коллоквиум проводится в форме индивидуальной беседы преподавателя с каждым студентом или беседы в небольших группах (2-3 человека). Обычно преподаватель задает несколько кратких конкретных вопросов, позволяющих выяснить степень добросовестности работы с литературой, проверяет конспект. Далее более подробно обсуждается какая-либо сторона проблемы, что позволяет оценить уровень понимания. По итогам коллоквиума выставляется дифференцированная оценка по пятибалльной системе.

Методические рекомендации по устному опросу/самоподготовке

После изучения определенной темы по записям в конспекте и учебнику, а также решения достаточного количества соответствующих задач на практических занятиях и самостоятельно студенту рекомендуется, используя лист опорных сигналов, воспроизвести по памяти определения, выводы формул, формулировки основных положений и доказательств. В случае необходимости следует рекомендовать еще раз внимательно разобраться в материале. Иногда недостаточность усвоения того или иного вопроса выясняется только при изучении дальнейшего материала. В этом случае надо вернуться назад и повторить плохо усвоенный материал. Важный критерий усвоения теоретического материала – умение решать задачи или пройти тестирование по пройденному материалу. Однако преподавателю следует помнить, что правильное решение задачи может получиться в результате применения механически заученных формул без понимания сущности теоретических положений.

Методические рекомендации по подготовке к семинарским занятиям

Одним из видов внеаудиторной самостоятельной работы является подготовка к семинарским занятиям. Семинар — форма учебно-практических занятий, при которой студенты обсуждают сообщения, доклады и рефераты, выполненные ими по результатам учебных или научных исследований под руководством преподавателя. Преподаватель в этом случае является координатором обсуждений темы семинара, подготовка к которому является обязательной. Поэтому тема семинара и основные источники обсуждения предъявляются до обсуждения для детального ознакомления, изучения. Цели обсуждений направлены на формирование навыков профессиональной полемики и закрепление обсуждаемого материала. Семинар — это такая форма организации обучения, при которой на этапе подготовки доминирует самостоятельная работа учащихся с учебной литературой и другими дидактическими средствами над серией вопросов, проблем и задач, а в процессе семинара идут активное обсуждение, дискуссии и выступления учащихся, где они под руководством преподавателя делают обобщающие выводы и заключения. Семинар предназначен для углубленного изучения дисциплины, овладения методологией научного познания, то главная цель семинарских занятий — обеспечить студентам возможность овладеть навыками и умениями использования теоретического знания применительно к особенностям изучаемой отрасли.

Методические рекомендации по подготовке к эссе

Одним из видов самостоятельной работы студентов является написание творческой работы по заданной либо согласованной с преподавателем теме. Творческая работа (эссе) представляет собой оригинальное произведение объемом 500-700 слов, посвященное какой-либо значимой классической либо современной проблеме в определенной теоретической и практической области. Творческая работа не является рефератом и не должна носить описательный характер, большое место в ней должно быть уделено аргументированному представлению своей точки зрения студентами, критической оценке рассматриваемого материала и проблематики, что должно способствовать раскрытию творческих и аналитических способностей. Цели написания эссе — научиться логически верно и аргументировано строить устную и письменную речь; работать над углублением и систематизацией своих философских знаний; овладеть способностью использовать основы знаний для формирования мировоззренческой позиции. Приступая к написанию эссе, изложите в одном предложении, что именно вы будете утверждать и доказывать (свой тезис). Эссе должно содержать ссылки на источники. Оригинальность текста должна быть от 80% по программе антиплагиата.

Методические рекомендации по подготовке к докладу

Для подготовки доклада необходимо выбрать актуальную тему. Желательно, чтобы тема была интересна докладчику и вызывала желание качественно подготовить материалы. Подготовка доклада предполагает: определение цели доклада; подбор необходимого материала, определяющего содержание доклада; составление плана доклада, распределение собранного материала в необходимой логической последовательности.

Композиция доклада имеет вступление, основную часть и заключение.

Вступление должно содержать: название доклада; сообщение основной идеи; современную оценку предмета изложения; краткое перечисление рассматриваемых вопросов; интересную для слушателей форму изложения. Основная часть, в которой необходимо раскрыть суть темы, обычно строится по принципу отчёта. Задача основной части: представить достаточно данных для того, чтобы слушатели заинтересовались темой.

Заключение – чёткое обобщение и краткие выводы по излагаемой теме.

Методические рекомендации по подготовке к собеседованию

Собеседование – средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Цель собеседования: проверка усвоения знаний; умений применять знания; сформированности профессионально значимых личностных качеств.

Подготовка к собеседованию предполагает повторение пройденного материала и приобретение навыка свободного владения терминологией и фактическими данными по определенному разделу дисциплины.

Методические рекомендации по подготовке к тестированию

Тестирование – это не только форма контроля, но и метод углубления, закрепления знаний обучающихся, так как в ходе собеседования преподаватель разъясняет сложные вопросы, возникающие у обучающегося в процессе изучения учебного материала. Однако тестирование не консультация и не экзамен. Его задача добиться глубокого изучения отобранного материала, пробудить у обучающегося стремление к чтению дополнительной экономической литературы. Зачет завершает изучение определенного раздела учебного курса и должен показать умение обучающегося использовать полученные знания в ходе подготовки и сдачи тестирования при ответах на экзаменационные вопросы. Тестирование может проводиться в устной или письменной форме. Подготовка к тестированию начинается с установочной консультации преподавателя, на которой он разъясняет развернутую тематику проблемы, рекомендует литературу для изучения и объясняет процедуру проведения тестирования. Как правило, на самостоятельную подготовку к тестированию обучающемуся отводится 2-3 недели. Полготовка включает в себя изучение рекомендованной литературы и (по указанию преподавателя) конспектирование важнейших источников. Тестирование проводится в форме индивидуальной беседы преподавателя с каждым обучающимся или беседы в небольших группах (3-5 человек). Обычно преподаватель задает несколько кратких конкретных вопросов, позволяющих выяснить степень добросовестности работы с литературой, контролирует конспект. Далее более подробно обсуждается какая-либо сторона проблемы, что позволяет оценить уровень понимания. Проведение тестирования позволяет обучающемуся приобрести опыт работы над первоисточниками, что в дальнейшем поможет с меньшими затратами времени работать над литературой при подготовке к промежуточной аттестации.

Методические рекомендации по подготовке к экзамену

Изучение многих общепрофессиональных и специальных дисциплин завершается экзаменом. Подготовка к экзамену способствует закреплению, углублению и обобщению знаний, получаемых, в процессе обучения, а также применению их к решению практических задач. Готовясь к экзамену, студент ликвидирует имеющиеся пробелы в знаниях, углубляет, систематизирует и упорядочивает свои знания. На экзамене студент демонстрирует то, что он приобрел в процессе обучения по конкретной учебной дисциплине. Экзаменационная сессия — это серия экзаменов, установленных учебным планом. Между экзаменами интервал 2-4 дня, в течение студент систематизирует уже имеющиеся знания. На консультации перед экзаменом студенты должны быть ознакомлены с основными требованиями и получить ответы на возникающие в процессе подготовки вопросы. Необходимо ориентировать студентов на систематическую подготовку к занятиям в течение семестра, что позволит использовать время экзаменационной сессии для систематизации знаний.

Методические рекомендации по подготовке к зачету

В ходе подготовки к зачету студент, в первую очередь, должен систематизировать знания, полученные в ходе изучения дисциплины. К зачету необходимо готовиться целенаправленно, регулярно, систематически и с первых дней обучения по данной дисциплине. В самом начале учебного курса познакомьтесь со следующей учебно-методической документацией:

- программой дисциплины;
- перечнем знаний и умений, которыми студент должен владеть;
- тематическими планами лекций, семинарских занятий;
- учебниками, учебными пособиями по дисциплине, а также электронными ресурсами;
- перечнем вопросов к зачету.

7.1. Рекомендуемая литература

После этого у обучающихся должно сформироваться четкое представление об объеме и характере знаний и умений, которыми надо будет овладеть по дисциплине. Систематическое выполнение учебной работы на лекциях и лабораторных занятиях позволит успешно освоить дисциплину и создать хорошую базу для сдачи зачета.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1.1. Основная литература Л.1.1 Белугина С. В. Архитектура компьютерных систем. Курс лекций [Электронный ресурс]:. - Санкт-Петербург: Лань, 2020. - 160 с. - Режим доступа: https://e.lanbook.com/book/133919 7.1.2. Дополнительная литература Л.2.1 Гельбух С. С. Сети ЭВМ и телекоммуникации. Архитектура и организация [Электронный ресурс]:учебное пособие. - Санкт-Петербург: Лань, 2019. - 208 с. - Режим доступа: https://e.lanbook.com/book/118646

7.2. Ли	цензионное и свободно распространяемое программное обеспечение в том числе отечественного производства
7.2.1	Kaspersky Endpoint Security
7.2.2	Microsoft Office 2013 Standard
7.2.3	Microsoft®WINHOME 10 Russian Academic OLP ILicense NoLevel Legalization GetGenuine
7.2.4	Creative Cloud for Teams Multiple Platforms Multi European Languages Subscription 12 months L2 (10-49) Named EDU
7.3. Пер	ечень профессиональных баз данных, информационных справочных систем и ресурсов сети Интернет
7.3.1	Электронно-библиотечная система "Лань". Режим доступа: https://e.lanbook.com/
7.3.2	Электронно-библиотечная система "Университетская библиотека онлайн". Режим доступа: https://biblioclub.ru/
7.3.3	Электронно-библиотечная система "BOOK.ru". Режим доступа: https://book.ru/
7.3.4	База данных международного индекса научного цитирования Scopus. Режим доступа: http://www.scopus.com/
7.3.5	Единое окно доступа к образовательным ресурсам. Режим доступа: http://window.edu.ru/
7.3.6	Научная электронная библиотека "eLIBRARY.RU". Режим доступа: https://www.elibrary.ru/
7.3.7	ПЛАТФОРМА ОНЛАЙН-ОБРАЗОВАНИЯ «РАЗУМ». Режим доступа: https://razoom.mgutm.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

8.1	Адрес: 453850, Республика Башкортостан, р-н Мелеузовский, г. Мелеуз, ул. Смоленская, д. 34, строение 1:
	аудитория 16-302 - Лаборатория «Интеллектуальное системы управление»
	Учебная аудитория для проведения занятий лабораторного и практического типа; для курсового проектирования
	(выполнения курсовых работ); для проведения групповых и индивидуальных консультаций; для текущего контроля
	и промежуточной аттестации
	: Рабочие места обучающихся; Рабочее место преподавателя; Ноутбук; Проектор; Экран; Классная доска; 20
	рабочих мест обучающихся оснащенные ПЭВМ с подключением к сети интернет и обеспечением доступа в
	электронную информационно-образовательную среду Университета; лабораторная установка по изучению газовых
	процессов (ТОТ-ГП); лабораторная установка «Математический, физический и пружинный маятники» (МХ-
	$M\Pi\Phi M)$

9. ОРГАНИЗАЦИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ

Организация образовательного процесса для лиц с ограниченными возможностями осуществляется в соответствии с «Методическими рекомендациями по организации образовательного процесса для инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса» Министерства образования и науки РФ от 08.04.2014г. № АК-44/05вн. В образовательном процессе используются социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Подбор и разработка учебных материалов производится с учетом индивидуальных особенностей. Предусмотрена возможность обучения по индивидуальному графику, при составлении которого возможны различные варианты проведения занятий: в академической группе и индивидуально, на дому с использованием дистанционных образовательных технологий.

Актуализация с учетом развития науки, техники, культуры, экономики, техники, технологий и социальной сферы
Руководитель ОПОП
канд. техн. наук, доц. Полевщиков И.А
Рабочая программа актуализирована, обсуждена и одобрена на заседании обеспечивающей кафедры
Информационные технологии и системы управления
Протокол от 2024 г. №
Зав. кафедрой Одинокова Е.В
Рабочая программа согласована на заседании выпускающей кафедры
Информационные технологии и системы управления
Протокол от 2024 г. №
Зав. кафедрой Одинокова Е.В
Актуализация с учетом развития науки, техники, культуры, экономики, техники, технологий и социальной сферы
Руководитель ОПОП
канд. техн. наук, доц. Полевщиков И.А
Рабочая программа актуализирована, обсуждена и одобрена на заседании обеспечивающей кафедры
Информационные технологии и системы управления
Протокол от 2025 г. №
Зав. кафедрой Одинокова Е.В
Рабочая программа согласована на заседании выпускающей кафедры
Информационные технологии и системы управления
Протокол от 2025 г. №
Зав. кафедрой Одинокова Е.В.
Актуализация с учетом развития науки, техники, культуры, экономики, техники, технологий и социальной сферы
Руководитель ОПОП
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А Рабочая программа актуализирована, обсуждена и одобрена на заседании обеспечивающей кафедры
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А
Руководитель ОПОП канд. техн. наук, доц. Полевщиков И.А